12 research outputs found

    Climate mitigation models need to become circular : let's start with the construction sector

    Get PDF
    ABSTRACT: Circular Economy (CE) is presented today as the way forward to achieving a sustainable and carbon-neutral society. Yet, circularity assessment tools such as Life Cycle Assessment (LCA), Material Flow Analysis (MFA), and Supply and value-chain analysis are currently disconnected from the models used to advise bodies that steer sustainability-driven policies like the Intergovernmental Panel on Climate Change (IPCC). Climate mitigation models (henceforth climate models) are used in policy discussions and international negotiations to track GHG emissions and identify pathways towards a low-carbon economy. One example is the JRC-EU-TIMES model developed by the International Energy Agency or the PRIMES model, which is the backbone of the energy and climate policy of the European Union (EU). These climate models are inherently suitable for representing only linear patterns of economic activity, where GHG emissions are modelled per economic sector (primary energy resource extraction, final energy generation, energy, and materials used in industry, buildings, etc.).info:eu-repo/semantics/publishedVersio

    Critical skills needs and challenges for STEM/STEAM graduates increased employability and entrepreneurship in the solar energy sector

    Get PDF
    © 2023 The Authors. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1016/j.rser.2023.113776Energy produced by photovoltaic module (PVM) is poised to deliver the UN Sustainable Development Goal 7 (SDG-7) by 2030 and Net-Zero by 2050 but not until ample graduates with adequate Solar Energy Technology (SET) skills are produced by Higher education institutions (HEIs). Although PVM has witnessed significant penetration globally, the sustainability of the growth of the sector is challenged by attendant monotonic skilled labour shortages. The evolving growth imbalance is critical in the European Union (EU), limits her global competitiveness and necessitates the need to create wider awareness on the green technology to stimulate more production of solar energy sector (SES) specific skills graduates. Discussing the mismatch between the skills Europe needs and has in the SES, the study outlines key critical skills Science, Technology, Engineering and Mathematics (STEM) cum Arts (STEAM) graduates ought to possess to secure sector employment and the challenges limiting them from acquiring the competencies. The review is conducted via extensive study of relevant literature, analysis of interviews and observations. Academic, industrial, and entrepreneurial skills are identified as critical SES needs. Designing and running educational modules/curricula that embed the identified solar technology specialist skills on students and learners are proposed as vehicle to increase their employability and entrepreneurship. This study profiles trends and developments in the SES for stakeholders’ increased awareness while presenting the specialist skills in-demand for employment in the sector. The adoption of SET Training (SETechTra) curricula/modules by the EIs will substantially increase the production of industry-ready graduates whilst decreasing the SES skills gap.The authors acknowledge the European Union for funding the project entitled “Solar Energy Technology Training (SETechTra) Module for STEM Undergraduates” which produced this article under the Erasmus + Programme of the European Union. Project detail include: €392, 000.00 total grant; 36 months duration and agreement no.: 2020-1-UK01-KA203-079236. Innovate UK is also acknowledged for supporting the development of the mobile solar power system, project No. 83383.Published versio

    Correlations of Seismic Velocities and Elastic Moduli with Temperature in Superhot and Enhanced Geothermal Systems

    No full text
    This paper presents correlations derived by linear regression analysis of seismic velocities VP and VS and elastic moduli EP and ES with temperature in Los Humeros superhot (SHGS) and Acoculco enhanced (EGS) geothermal systems at depths down to 3 km below the surface and temperatures up to approximately 400 °C. In Los Humeros, the seismic velocity models were derived from the inversion of legacy active seismic survey data acquired in 1998, as well as from passive seismic monitoring and ambient seismic noise interferometry carried out during 2017–2019 by the GEMex consortium. In the Acoculco EGS, ambient seismic noise data were used. Steady-state formation temperatures were re-evaluated during and after the end of the GEMex project using measurements provided as a courtesy of the Federal Electricity Commission of Mexico (CFE). The density data needed for the calculation of elastic moduli were provided by the GEMex consortium, as derived from the inversion of regional and local gravity surveys. The analysis indicated that statistically significant correlations of seismic parameters to temperature exist in the vertical direction, namely exponential in Los Humeros superhot and logarithmic in Acoculco EGS, but no correlation was evident in the horizontal direction. This result suggests an indirect relationship among the considered variables due to interdependence on other parameters, such as pressure and vapor saturation. As the analysis was performed using only data obtained from sensing-at-surface methods, without direct geophysical calibration at depth, a distributed fiber-optic seismic and temperature sensing system at both surface and downhole is proposed for active-source and passive seismic monitoring, and seismic-while-drilling by the drill-bit source is considered for reverse vertical seismic profile (RVSP) recording whenever possible for future high-temperature geothermal applications

    Examining the Development of a Geothermal Risk Mitigation Scheme in Greece

    No full text
    Geothermal project development entails a number of risks, the most significant of which is the geological risk. The introduction of a risk mitigation scheme (RMS) might enable project developers to shift some of the geological risk to public or private entities. Keeping the above in mind, the objective of this study is to examine the development of an effective and financially feasible geothermal risk mitigation scheme in Greece, i.e., a country with no such scheme available. In this respect, the existing status of the geothermal sector in the country is presented, followed by an evaluation of the financial sustainability of a potential RMS, taking into account different insurance premiums, risk coverages, and project success rates. The results indicate that alternative insurance premium, risk coverage, and success rate requirements would result in different financial preconditions for the foundation either of a public or a private fund. Keeping in mind that in most examined scenarios the initial RMS capital is expended before the end of the ending of the scheme, it is suggested that such a plan can only be initiated by the public sector, which is typical of countries with little-developed geothermal markets

    Correlations of Seismic Velocities and Elastic Moduli with Temperature in Superhot and Enhanced Geothermal Systems

    No full text
    This paper presents correlations derived by linear regression analysis of seismic velocities VP and VS and elastic moduli EP and ES with temperature in Los Humeros superhot (SHGS) and Acoculco enhanced (EGS) geothermal systems at depths down to 3 km below the surface and temperatures up to approximately 400 °C. In Los Humeros, the seismic velocity models were derived from the inversion of legacy active seismic survey data acquired in 1998, as well as from passive seismic monitoring and ambient seismic noise interferometry carried out during 2017–2019 by the GEMex consortium. In the Acoculco EGS, ambient seismic noise data were used. Steady-state formation temperatures were re-evaluated during and after the end of the GEMex project using measurements provided as a courtesy of the Federal Electricity Commission of Mexico (CFE). The density data needed for the calculation of elastic moduli were provided by the GEMex consortium, as derived from the inversion of regional and local gravity surveys. The analysis indicated that statistically significant correlations of seismic parameters to temperature exist in the vertical direction, namely exponential in Los Humeros superhot and logarithmic in Acoculco EGS, but no correlation was evident in the horizontal direction. This result suggests an indirect relationship among the considered variables due to interdependence on other parameters, such as pressure and vapor saturation. As the analysis was performed using only data obtained from sensing-at-surface methods, without direct geophysical calibration at depth, a distributed fiber-optic seismic and temperature sensing system at both surface and downhole is proposed for active-source and passive seismic monitoring, and seismic-while-drilling by the drill-bit source is considered for reverse vertical seismic profile (RVSP) recording whenever possible for future high-temperature geothermal applications

    Fundusz ubezpieczenia od ryzyka w projektach geotermalnych – symulacja operacyjna i finansowa działania w wybranych krajach europejskich

    No full text
    The insurance funds belong to efficient measures mitigating risks in geothermal projects, including resource risk. They already exist in some European countries, e.g., France, the Netherlands, Turkey. Recently, the proposals of establishing such funds were elaborated for three countries: Greece, Hungary, and Poland within the framework of the EU-funded project “Developing geothermal and renewable energy projects by mitigating their risks”, GEORISK (www.georisk-project.eu). A 10 year operational and financial simulation of the proposed public insurance funds was conducted to prove their sustainability in each of three listed states. It started with the determination of the country-specific premises. The numbers of projects in the next 10 years possible to be covered by funds were assumed by the authors on the bases of realistic estimations. The initial capital, the fixed costs, the costs of the project evaluation, the premium fees paid by the investors, the payment for the unsuccessful projects altogether were taken into account. The first draft simulation was done with the exact Hungarian assumptions and inputs of fixed costs and also with average project data, thus making it appropriate to perform sensitivity analyses on: insurance premiums, success rates and the risk coverages. Then, complete simulations were made for three listed countries. The results of the simulation show that a resource risk insurance fund can be a sustainable and an effective measure to support geothermal energy sector development. During the planning of a new fund, it is important to make use of long experiences both of the former and existing funds.Fundusze ubezpieczenia należą do skutecznych form łagodzenia ryzyka w projektach geotermalnych, w tym ryzyka zasobowego. Funkcjonują one już w niektórych krajach europejskich, np. we Francji, Holandii, Turcji. Ostatnio opracowano propozycje ich utworzenia dla trzech krajów: Grecji, Węgier i Polski, w ramach projektu finansowanego przez UE „Rozwój projektów z zakresu energii geotermalnej i odnawialnych źródeł poprzez łagodzenie ich ryzyk”, GEORISK (www.georisk-project.eu). Dla każdego z podanych krajów wykonano symulację 10 lat funkcjonowania operacyjnego i finansowego proponowanego publicznego funduszu ubezpieczeniowego, aby udowodnić ich zrównoważony charakter. Symulację rozpoczęto od przyjęcia założeń uwzględniających specyfikę poszczególnych krajów. Liczbę projektów możliwych do objęcia funduszami w trakcie 10 lat przyjęto według realistycznych szacunków dla każdego z krajów. Symulację wykonano z uwzględnieniem kapitału początkowego, kosztów stałych, kosztów oceny projektów zgłaszanych do ubezpieczenia, składek ubezpieczeniowych, wypłat za nieudane projekty. Pierwszą roboczą symulację wykonano dla Węgier według rzeczywistych proponowanych założeń i danych wejściowych odnośnie do kosztów stałych, a także uśrednionych założonych danych. Wykonano analizy wrażliwości dotyczących składki ubezpieczeniowej, wskaźnika sukcesu i stopnia pokrycia ryzyka. Następnie wykonano pełne symulacje dla trzech podanych krajów. Wyniki symulacji wskazują, że fundusz ubezpieczenia od ryzyka zasobowego może być zrównoważoną i skuteczną formą wspierania rozwoju energetyki geotermalnej. Przy planowaniu nowego funduszu ważne jest korzystanie z wieloletnich doświadczeń funduszy, które funkcjonowały w przeszłości, i tych, które działają obecnie

    Understanding Societal Requirements of CCS Projects: Application of the Societal Embeddedness Level Assessment Methodology in Four National Case Studies

    No full text
    The DigiMon project aims to develop and demonstrate an affordable, flexible, societally embedded, and smart digital monitoring early warning system for any subsurface CO2 storage field. The societal embeddedness level (SEL) assessment is a novel methodology which provides insight into the societal requirements for technological innovation to be deployed. The SEL assessment framework was applied in four case studies, concerning CCS development in Norway, the Netherlands, Greece, and Germany. The resulting societal embeddedness levels of CCS, on a scale of 1–4, were SEL 3 in Norway with considerable progress towards level 4, followed by the Netherlands with SEL 2 with several initiatives towards offshore demonstration projects, and then by Greece and Germany with SEL 1. The outcomes of the SEL assessments show which societal requirements have been met in current CCS developments and which ones should be improved for CCS deployment. They also show that monitoring currently is a regulatory requirement as part of permitting procedures, while it may alleviate community concerns on safety, provided that it has certain attributes. The insights from the four national case studies are further used in the DigiMon project to develop the innovative societal embedded DigiMon monitoring system

    Understanding Societal Requirements of CCS Projects: Application of the Societal Embeddedness Level Assessment Methodology in Four National Case Studies

    No full text
    The DigiMon project aims to develop and demonstrate an affordable, flexible, societally embedded, and smart digital monitoring early warning system for any subsurface CO2 storage field. The societal embeddedness level (SEL) assessment is a novel methodology which provides insight into the societal requirements for technological innovation to be deployed. The SEL assessment framework was applied in four case studies, concerning CCS development in Norway, the Netherlands, Greece, and Germany. The resulting societal embeddedness levels of CCS, on a scale of 1–4, were SEL 3 in Norway with considerable progress towards level 4, followed by the Netherlands with SEL 2 with several initiatives towards offshore demonstration projects, and then by Greece and Germany with SEL 1. The outcomes of the SEL assessments show which societal requirements have been met in current CCS developments and which ones should be improved for CCS deployment. They also show that monitoring currently is a regulatory requirement as part of permitting procedures, while it may alleviate community concerns on safety, provided that it has certain attributes. The insights from the four national case studies are further used in the DigiMon project to develop the innovative societal embedded DigiMon monitoring system

    Latent Thermal Energy Storage Application in a Residential Building at a Mediterranean Climate

    No full text
    An innovative thermal energy storage system (TESSe2b) was retrofitted in a residential building in Cyprus with a typical Mediterranean climate. The system comprises flat-plate solar collectors, thermal energy storage tanks filled with organic phase change material, a geothermal installation consisting of borehole heat exchangers with and without phase change material and a ground source heat pump, an advanced self-learning control system, backup devices and several other auxiliary components. The thermal energy storage tanks cover the building’s needs at certain temperature ranges (10–17 °C for cooling, 38–45 °C for heating and 50–60 °C for domestic hot water). A performance evaluation was conducted by comparing the TESSe2b system with the existing conventional heating and cooling system. The systems were simulated using commercial software, and the performance of the systems and the building’s energy needs were calculated. Based on the energy quantities, an economic analysis followed. The equivalent annual primary energy consumption with the conventional system resulted in being 43335 kWh, while for the storage system, it was only 8398 kWh. The payback period for the storage system was calculated to be equal to 9.76 years. The operation of the installed storage system provided data for calculations of the seasonal performance factor and storage performance. The seasonal performance factor values were very high during June, July and August, since the TESSe2b system works very efficiently in cooling mode due to the very high temperatures that dominate in Cyprus. The measured stored thermal energy for cooling, heating and domestic hot water resulted in being 14.5, 21.9 and 6.2 kWh, respectively. Moreover, the total volume of the phase change material thermal energy storage tanks for heating and domestic hot water was calculated to be roughly several times smaller than the volume of a tank with water as a storage medium
    corecore